Search results
Results From The WOW.Com Content Network
A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality ...
Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.
A perfect matching can only occur when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when the graph has an odd number of vertices, and such a matching must be maximum. In the above figure, part (c) shows a near-perfect matching.
The general solution to this differential equation is G(x) ∝ exp(x + x 2 /2), and T(0) = 1 shows that the constant of proportionality is 1. This function is closely related to the exponential generating function of the Hermite polynomials, which are the matching polynomials of the complete graphs. [13]
In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = { 1 , 2 , … , n } {\displaystyle V=\{1,2,\dots ,n\}} then the Tutte matrix is an n -by- n matrix A with entries
The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.
In mathematics, economics, and computer science, the stable marriage problem (also stable matching problem) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element. A matching is a bijection from the elements
The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...