Search results
Results From The WOW.Com Content Network
Rigorously, a subderivative of a convex function : at a point in the open interval is a real number such that () for all .By the converse of the mean value theorem, the set of subderivatives at for a convex function is a nonempty closed interval [,], where and are the one-sided limits = (), = + ().
Let f denote a real-valued function defined on a subset I of the real numbers.. If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit + ():= + () exists as a real number, then f is called right differentiable at a and the limit ∂ + f(a) is called the right derivative of f at a.
Suppose that f is differentiable at (,), with derivative K, and assume without loss of generality that >, so the tangent line at has positive slope (is increasing). Then there is a neighborhood of x 0 {\displaystyle x_{0}} on which the secant lines through x 0 {\displaystyle x_{0}} all have positive slope, and thus to the right of x 0 ...
It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...
Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x. If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r), then f has a local maximum at x.
A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing , and the limit = (+) exists. [2] This means that, for every positive real number , there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.
the function f is n − 1 times continuously differentiable on the closed interval [a, b] and the n th derivative exists on the open interval (a, b), and; there are n intervals given by a 1 < b 1 ≤ a 2 < b 2 ≤ ⋯ ≤ a n < b n in [a, b] such that f (a k) = f (b k) for every k from 1 to n. Then there is a number c in (a, b) such that the n ...
A well-known counterexample is the absolute value function f(x) = |x|, which is not differentiable at x = 0, but is symmetrically differentiable here with symmetric derivative 0. For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3]