Search results
Results From The WOW.Com Content Network
According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...
r, v, and in the case of an elliptic orbit, the semi-major axis a, are defined accordingly (hence r is the distance) μ = Gm 1 + Gm 2 = μ 1 + μ 2, where m 1 and m 2 are the masses of the two bodies. Then: for circular orbits, rv 2 = r 3 ω 2 = 4π 2 r 3 /T 2 = μ
where and are any two masses, is the gravitational constant, and is the distance between the two point-like masses. Two bodies orbiting their center of mass (red cross) Using the integral form of Gauss's Law , this formula can be extended to any pair of objects of which one is far more massive than the other — like a planet relative to any ...
where G is the universal constant of gravitation (commonly taken as G = 6.674 × 10 −11 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...
591 Gm (4.0 au) – minimum distance between the Earth and Jupiter; 780 Gm (5.2 au) – average distance between Jupiter and the Sun; 785 Gm (5.25 au) – diameter of Rho Cassiopeiae, a rare yellow hypergiant star [185] 947 Gm (6.4 au) – diameter of Antares A; 965 Gm (6.4 au) – maximum distance between the Earth and Jupiter
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67×10 −11 m 3 ·kg −1 ·s −2)
The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.