Search results
Results From The WOW.Com Content Network
Other small Pythagorean triples such as (6, 8, 10) are not listed because they are not primitive; for instance (6, 8, 10) is a multiple of (3, 4, 5). Each of these points (with their multiples) forms a radiating line in the scatter plot to the right. Additionally, these are the remaining primitive Pythagorean triples of numbers up to 300:
With a the shorter and b the longer legs of a triangle and c its hypotenuse, the Pythagoras family of triplets is defined by c − b = 1, the Plato family by c − b = 2, and the Fermat family by | a − b | = 1. The Stifel sequence produces all primitive triplets of the Pythagoras family, and the Ozanam sequence produces all primitive triples ...
If any of the above matrices, say A, is applied to a triple (a, b, c) T having the Pythagorean property a 2 + b 2 = c 2 to obtain a new triple (d, e, f) T = A(a, b, c) T, this new triple is also Pythagorean.
Its three integer sides are known as a Pythagorean triple or Pythagorean triplet or Pythagorean triad. [9] All Pythagorean triples ( a , b , c ) {\displaystyle (a,b,c)} with hypotenuse c {\displaystyle c} which are primitive (the sides having no common factor ) can be generated by
A Pythagorean quadruple is called primitive if the greatest common divisor of its entries is 1. Every Pythagorean quadruple is an integer multiple of a primitive quadruple. The set of primitive Pythagorean quadruples for which a is odd can be generated by the formulas = +, = (+), = (), = + + +, where m, n, p, q are non-negative integers with greatest common divisor 1 such that m + n + p + q is o
[9] [10] The Tetractys [also known as the decad] is an equilateral triangle formed from the sequence of the first ten numbers aligned in four rows. It is both a mathematical idea and a metaphysical symbol that embraces within itself—in seedlike form—the principles of the natural world, the harmony of the cosmos, the ascent to the divine ...
The sutras contain statements of the Pythagorean theorem, both in the case of an isosceles right triangle and in the general case, as well as lists of Pythagorean triples. [23] In Baudhayana, for example, the rules are given as follows:
If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles.