Search results
Results From The WOW.Com Content Network
Type aliasing is a feature in some programming languages that allows creating a reference to a type using another name. It does not create a new type hence does not increase type safety . It can be used to shorten a long name.
An example of spatial aliasing is the moiré pattern observed in a poorly pixelized image of a brick wall. Spatial anti-aliasing techniques avoid such poor pixelizations. Aliasing can be caused either by the sampling stage or the reconstruction stage; these may be distinguished by calling sampling aliasing prealiasing and reconstruction ...
In alias analysis, we divide the program's memory into alias classes. Alias classes are disjoint sets of locations that cannot alias to one another. For the discussion here, it is assumed that the optimizations done here occur on a low-level intermediate representation of the program. This is to say that the program has been compiled into ...
Aliasing can occur in any language that can refer to one location in memory with more than one name (for example, with pointers).This is a common problem with functions that accept pointer arguments, and their tolerance (or the lack thereof) for aliasing must be carefully documented, particularly for functions that perform complex manipulations on memory areas passed to them.
As another example, GCC describes this as type-punning and warns that it will break strict aliasing. Thiago Macieira discusses several problems that can arise when type-punning causes the compiler to make inappropriate optimizations. [6] There are many examples of languages that allow implicit type conversions, but in a type
Python's runtime does not restrict access to such attributes, the mangling only prevents name collisions if a derived class defines an attribute with the same name. On encountering name mangled attributes, Python transforms these names by prepending a single underscore and the name of the enclosing class, for example: >>>
Taking aliasing into account was the major improvement made by Liskov and Wing (1994), and a key ingredient is the history constraint. Under the definitions of Meyer and America, a mutable point would be a behavioral subtype of an immutable point, whereas Liskov substitution principle forbids this.
Although on GCC and LLVM this particular program compiles and runs as expected, more complicated examples may interact with assumptions made by strict aliasing and lead to unwanted behavior. The option -fno-strict-aliasing will ensure correct behavior of code using this form of type-punning, although using other forms of type punning is ...