Search results
Results From The WOW.Com Content Network
The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz (W·sr −1 ·m −2 ·Hz −1) and that of spectral radiance in wavelength is the watt per steradian per square metre per metre (W·sr −1 ·m −3)—commonly the watt per steradian per square metre per nanometre (W·sr −1 ·m −2 ·nm −1).
Radiance is the integral of the spectral radiance over all frequencies or wavelengths. For radiation emitted by the surface of an ideal black body at a given temperature, spectral radiance is governed by Planck's law, while the integral of its radiance, over the hemisphere into which its surface radiates, is given by the Stefan–Boltzmann law.
Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...
Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).
Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with ...
Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity". Spectral exitance: M e,ν [nb 3] watt per square metre per hertz W⋅m −2 ⋅Hz −1: M⋅T −2: Radiant exitance of a surface per
Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity". Spectral radiance Specific intensity L e,Ω,ν [nb 6] watt per steradian per square metre per hertz W⋅sr −1 ⋅m −2 ⋅Hz −1: M⋅T −2
Spectral measurement devices are referred to as spectrometers, spectrophotometers, spectrographs or spectral analyzers. Most spectroscopic analysis in the laboratory starts with a sample to be analyzed, then a light source is chosen from any desired range of the light spectrum, then the light goes through the sample to a dispersion array ...