Search results
Results From The WOW.Com Content Network
The three-point bending flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine (tensile testing machine or tensile tester) with a three-point or four-point bend fixture.
[1]: 58 For example, low-carbon steel generally exhibits a very linear stress–strain relationship up to a well-defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...
For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]
Stress analysis for elastic structures is based on the theory of elasticity and infinitesimal strain theory. When the applied loads cause permanent deformation, one must use more complicated constitutive equations, that can account for the physical processes involved ( plastic flow , fracture , phase change , etc.).
The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]
is strain; is the strain upon failure; is stress; If the upper limit of integration up to the yield point is restricted, the energy absorbed per unit volume is known as the modulus of resilience. Mathematically, the modulus of resilience can be expressed by the product of the square of the yield stress divided by two times the Young's modulus ...
where is the Young's modulus and is the Poisson's ratio of the material. The material is assumed to be an isotropic, homogeneous, and linear elastic. The crack has been assumed to extend along the direction of the initial crack For plane strain conditions, the equivalent relation is a little more complicated:
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness . High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.