When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  4. List of reciprocals of primes - Wikipedia

    en.wikipedia.org/wiki/Reciprocals_of_primes

    Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.

  5. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases. Thus, for example in base 2, π = 3.1415926... 10 can be written as the aperiodic 11.001001000011111... 2. Putting overscores, n, or dots, ṅ, above the common digits is a convention used to represent repeating rational expansions. Thus:

  6. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.

  7. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    For example, if a right triangle has legs of the length 1 then the length of its hypotenuse is given by the irrational number . π is another irrational number and describes the ratio of a circle's circumference to its diameter. [22] The decimal representation of an irrational number is infinite without repeating decimals. [23]

  8. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Although all decimal fractions are fractions, and thus it is possible to use a rational data type to represent it exactly, it may be more convenient in many situations to consider only non-repeating decimal fractions (fractions whose denominator is a power of ten). For example, fractional units of currency worldwide are mostly based on a ...

  9. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set.