Ad
related to: perimeter of irregular rectangles
Search results
Results From The WOW.Com Content Network
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star.
The isoperimetric theorem for rectangles states that among all rectangles of a given perimeter, the square has the largest area. The midpoints of the sides of any quadrilateral with perpendicular diagonals form a rectangle. A parallelogram with equal diagonals is a rectangle.
The only equable rectangles with integer sides are the 4 × 4 square and the 3 × 6 rectangle. [4] An integer rectangle is a special type of polyomino, and more generally there exist polyominoes with equal area and perimeter for any even integer area greater than or equal to 16. For smaller areas, the perimeter of a polyomino must exceed its area.
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden.
The mean width of a convex polygon is equal to its perimeter divided by . So its width is the diameter of a circle with the same perimeter as the polygon. [5] Every polygon inscribed in a circle (such that all vertices of the polygon touch the circle), if not self-intersecting, is convex. However, not every convex polygon can be inscribed in a ...
where K is the area of a convex quadrilateral with perimeter L. Equality holds if and only if the quadrilateral is a square. The dual theorem states that of all quadrilaterals with a given area, the square has the shortest perimeter. The quadrilateral with given side lengths that has the maximum area is the cyclic quadrilateral. [43]
If the lengths of the three sides are known then Heron's formula can be used: () () where a, b, c are the sides of the triangle, and = (+ +) is half of its perimeter. [2] If an angle and its two included sides are given, the area is 1 2 a b sin ( C ) {\displaystyle {\tfrac {1}{2}}ab\sin(C)} where C is the given angle and a and b are its ...
Similarly, a comparison can be made between the perimeter of the shape and that of its convex hull, [3] its bounding circle, [1] or a circle having the same area. [ 1 ] Other tests involve determining how much area overlaps with a circle of the same area [ 2 ] or a reflection of the shape itself.