When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  4. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    Multiple non-central correlated samples. The distribution of the product of correlated non-central normal samples was derived by Cui et al. [11] and takes the form of an infinite series of modified Bessel functions of the first kind. Moments of product of correlated central normal samples. For a central normal distribution N(0,1) the moments are

  5. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...

  6. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    In probability theory, the central limit theorem (CLT) states that, in many situations, when independent and identically distributed random variables are added, their properly normalized sum tends toward a normal distribution. This article gives two illustrations of this theorem. Both involve the sum of independent and identically-distributed ...

  7. Cramér's decomposition theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_decomposition...

    Let a random variable ξ be normally distributed and admit a decomposition as a sum ξ=ξ 1 +ξ 2 of two independent random variables. Then the summands ξ 1 and ξ 2 are normally distributed as well. A proof of Cramér's decomposition theorem uses the theory of entire functions.

  8. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    If and are normally distributed and independent, this implies they are "jointly normally distributed", i.e., the pair (,) must have multivariate normal distribution. However, a pair of jointly normally distributed variables need not be independent (would only be so if uncorrelated, ρ = 0 {\displaystyle \rho =0} ).

  9. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    Ratio distribution. Cauchy distribution; Slash distribution; Inverse distribution; Product distribution; Mellin transform; Sum of normally distributed random variables; List of convolutions of probability distributions – the probability measure of the sum of independent random variables is the convolution of their probability measures. Law of ...