When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acetyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acetyl-CoA

    At high glucose levels, acetyl-CoA is produced through glycolysis. [14] Pyruvate undergoes oxidative decarboxylation in which it loses its carboxyl group (as carbon dioxide) to form acetyl-CoA, giving off 33.5 kJ/mol of energy. The oxidative conversion of pyruvate into acetyl-CoA is referred to as the pyruvate dehydrogenase reaction.

  3. Ketogenesis - Wikipedia

    en.wikipedia.org/wiki/Ketogenesis

    However, if the amounts of acetyl-CoA generated in fatty-acid β-oxidation challenge the processing capacity of the TCA cycle; i.e. if activity in TCA cycle is low due to low amounts of intermediates such as oxaloacetate, acetyl-CoA is then used instead in biosynthesis of ketone bodies via acetoacetyl-CoA and β-hydroxy-β-methylglutaryl-CoA .

  4. Ketone bodies - Wikipedia

    en.wikipedia.org/wiki/Ketone_bodies

    Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.

  5. Fatty acid degradation - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_degradation

    Production of acyl-CoA and acetyl-CoA; The final product of β-oxidation of an even-numbered fatty acid is acetyl-CoA, the entry molecule for the citric acid cycle. [3] If the fatty acid is an odd-numbered chain, the final product of β-oxidation will be propionyl-CoA.

  6. Beta oxidation - Wikipedia

    en.wikipedia.org/wiki/Beta_oxidation

    In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH 2, which are electron carriers used in the ...

  7. Citrate–malate shuttle - Wikipedia

    en.wikipedia.org/wiki/Citrate–malate_shuttle

    Cytosolic citrate, meaning citrate in the cytosol, is a key substrate for the generation of energy. It releases acetyl-CoA and provides NADPH for fatty acid synthesis, and, in subsequent pathways, generates NAD + for glycolysis. Citrate also activates acetyl-CoA carboxylase, an enzyme that is essential in the fatty acid synthesis pathway. [11]

  8. Wood–Ljungdahl pathway - Wikipedia

    en.wikipedia.org/wiki/Wood–Ljungdahl_pathway

    Two specific enzymes participate on the carbon monoxide side of the pathway: CO dehydrogenase and acetyl-CoA synthase. The former catalyzes the reduction of the CO 2 and the latter combines the resulting CO with a methyl group to give acetyl-CoA. [1] [2] Some anaerobic bacteria use the Wood–Ljungdahl pathway in reverse to break down acetate.

  9. Fatty acid synthesis - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_synthesis

    This cannot occur directly. To obtain cytosolic acetyl-CoA, citrate (produced by the condensation of acetyl-CoA with oxaloacetate) is removed from the citric acid cycle and carried across the inner mitochondrial membrane into the cytosol. [7] There it is cleaved by ATP citrate lyase into acetyl-CoA and oxaloacetate.