Search results
Results From The WOW.Com Content Network
Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi, [11] [12] as well as for reliable storage in media such as flash memory, hard disk and RAM. [13] Error-correcting codes are usually distinguished between convolutional codes and block codes:
That these codes allow indeed for quantum computations of arbitrary length is the content of the quantum threshold theorem, found by Michael Ben-Or and Dorit Aharonov, which asserts that you can correct for all errors if you concatenate quantum codes such as the CSS codes—i.e. re-encode each logical qubit by the same code again, and so on, on ...
A Reed–Solomon code (like any MDS code) is able to correct twice as many erasures as errors, and any combination of errors and erasures can be corrected as long as the relation 2E + S ≤ n − k is satisfied, where is the number of errors and is the number of erasures in the block.
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
Hadamard code is a [,,] linear code and is capable of correcting many errors. Hadamard code could be constructed column by column : the i t h {\displaystyle i^{th}} column is the bits of the binary representation of integer i {\displaystyle i} , as shown in the following example.
An error-correcting code is a way of encoding x as a message such that Bob will successfully understand the value x as intended by Alice, even if the message Alice sends and the message Bob receives differ. In an error-correcting code with feedback, the channel is two-way: Bob can send feedback to Alice about the message he received.
Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).
Troubleshooting is a form of problem solving, often applied to repair failed products or processes on a machine or a system.It is a logical, systematic search for the source of a problem in order to solve it, and make the product or process operational again.