Ads
related to: steps to solve rational equations examples with solutions worksheet
Search results
Results From The WOW.Com Content Network
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is + + =, where a ≠ 0. The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square.
In some other cases, in particular if the equation is in one unknown, it is possible to solve the equation for rational-valued unknowns (see Rational root theorem), and then find solutions to the Diophantine equation by restricting the solution set to integer-valued solutions. For example, the polynomial equation + + = has as rational solutions ...
Example 2: We can demonstrate the same methods on a more complex game and solve for the rational strategies. In this scenario, the blue coloring represents the dominating numbers in the particular strategy. Step-by-step solving: For Player 2, X is dominated by the mixed strategy 1 / 2 Y and 1 / 2 Z.
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution x = p ⁄ q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n.