Ad
related to: conditional expected value formula excel spreadsheet
Search results
Results From The WOW.Com Content Network
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
Under some formulations, it is only equivalent to expected shortfall when the underlying distribution function is continuous at (), the value at risk of level . [2] Under some other settings, TVaR is the conditional expectation of loss above a given value, whereas the expected shortfall is the product of this value with the probability of ...
This relationship can be used to translate properties of expected values into properties of probabilities, e.g. using the law of large numbers to justify estimating probabilities by frequencies. The expected values of the powers of X are called the moments of X; the moments about the mean of X are expected values of powers of X − E[X].
Note that the conditional expected value is a random variable in its own right, whose value depends on the value of . Notice that the conditional expected value of given the event = is a function of (this is where adherence to the conventional and rigidly case-sensitive notation of probability theory becomes important!).
Note: The conditional expected values E( X | Z) and E( Y | Z) are random variables whose values depend on the value of Z. Note that the conditional expected value of X given the event Z = z is a function of z. If we write E( X | Z = z) = g(z) then the random variable E( X | Z) is g(Z). Similar comments apply to the conditional covariance.
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
Closed-form formulas exist for calculating the expected shortfall when the payoff of a portfolio or a corresponding loss = follows a specific continuous distribution. In the former case, the expected shortfall corresponds to the opposite number of the left-tail conditional expectation below − VaR α ( X ) {\displaystyle -\operatorname ...