Search results
Results From The WOW.Com Content Network
A dihedral angle is the angle between two intersecting planes or half-planes. It is a plane angle formed on a third plane, perpendicular to the line of intersection between the two planes or the common edge between the two half-planes. In higher dimensions, a dihedral angle represents the angle between two hyperplanes.
Dihedral angle is the upward angle from horizontal of the wings or tailplane of a fixed-wing aircraft. "Anhedral angle" is the name given to negative dihedral angle, that is, when there is a downward angle from horizontal of the wings or tailplane of a fixed-wing aircraft. Dihedral angle has a strong influence on dihedral effect, which is named ...
The dihedral angles for the edge-transitive polyhedra are: Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle (radians) dihedral angle
This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...
where J is the 3 J coupling constant, is the dihedral angle, and A, B, and C are empirically derived parameters whose values depend on the atoms and substituents involved. [3] The relationship may be expressed in a variety of equivalent ways e.g. involving cos 2φ rather than cos 2 φ —these lead to different numerical values of A , B , and C ...
where ranges over all six of the dihedral angles between any two planes that contain the tetrahedral faces OAB, OAC, OBC and ABC. [5] A useful formula for calculating the solid angle of the tetrahedron at the origin O that is purely a function of the vertex angles θ a, θ b, θ c is given by L'Huilier's theorem [6] [7] as
The solid angle, Ω, at the vertex of a Platonic solid is given in terms of the dihedral angle by Ω = q θ − ( q − 2 ) π . {\displaystyle \Omega =q\theta -(q-2)\pi .\,} This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron { p , q } is a regular q -gon.
The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA). The sine rule gives C and then we have Case 7. There are ...