Ad
related to: quadratics completing the square calculator
Search results
Results From The WOW.Com Content Network
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
Completing the square can be used to derive a general formula for solving quadratic equations, called the quadratic formula. [9] The mathematical proof will now be briefly summarized. [ 10 ] It can easily be seen, by polynomial expansion , that the following equation is equivalent to the quadratic equation: ( x + b 2 a ) 2 = b 2 − 4 a c 4 a 2 ...
To complete the square, form a squared binomial on the left-hand side of a quadratic equation, from which the solution can be found by taking the square root of both sides. The standard way to derive the quadratic formula is to apply the method of completing the square to the generic quadratic equation a x 2 + b x + c = 0 {\displaystyle ...
Where calculators have added functions (such as square root, or trigonometric functions), software algorithms are required to produce high precision results. Sometimes significant design effort is needed to fit all the desired functions in the limited memory space available in the calculator chip , with acceptable calculation time.
A typical use of this is the completing the square method for getting the quadratic formula. Another example is the factorization of x 4 + 1. {\displaystyle x^{4}+1.} If one introduces the non-real square root of –1 , commonly denoted i , then one has a difference of squares x 4 + 1 = ( x 2 + i ) ( x 2 − i ) . {\displaystyle x^{4}+1=(x^{2 ...
The square root of a univariate quadratic function gives rise to one of the four conic sections, almost always either to an ellipse or to a hyperbola. If a > 0 , {\displaystyle a>0,} then the equation y = ± a x 2 + b x + c {\displaystyle y=\pm {\sqrt {ax^{2}+bx+c}}} describes a hyperbola, as can be seen by squaring both sides.
The symmetries in this solution are easy to see. There are three roots of the cubic, corresponding to the three ways that a quartic can be factored into two quadratics, and choosing positive or negative values of for the square root of merely exchanges the two quadratics with one another.