Search results
Results From The WOW.Com Content Network
Surface plot may refer to: Surface plot (mathematics), a graph of a function of two variables; Surface plot (graphics), the visualization of a surface;
The graph of a continuous function of two variables, defined over a connected open subset of R 2 is a topological surface. If the function is differentiable, the graph is a differentiable surface. A plane is both an algebraic surface and a differentiable surface. It is also a ruled surface and a surface of revolution.
The Heawood graph and associated map embedded in the torus.. In topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of [,]) are associated with edges in such a way that:
Surface plot : In this visualization of the graph of a bivariate function, a surface is plotted to fit a set of data triplets (X, Y, Z), where Z if obtained by the function to be plotted Z=f(X, Y). Usually, the set of X and Y values are equally spaced.
Given a surface, one may integrate over this surface a scalar field (that is, a function of position which returns a scalar as a value), or a vector field (that is, a function which returns a vector as value). If a region R is not flat, then it is called a surface as shown in the illustration.
A ruled surface is one which can be generated by the motion of a straight line in E 3. [46] Choosing a directrix on the surface, i.e. a smooth unit speed curve c(t) orthogonal to the straight lines, and then choosing u(t) to be unit vectors along the curve in the direction of the lines, the velocity vector v = c t and u satisfy
These homeomorphisms are also known as (coordinate) charts. The boundary of the upper half-plane is the x-axis. A point on the surface mapped via a chart to the x-axis is termed a boundary point. The collection of such points is known as the boundary of the surface which is necessarily a one-manifold, that is, the union of closed curves.
Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)