When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    A cosmological horizon is a measure of the distance from which one could possibly retrieve information. [1] This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a ...

  3. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    A black hole event horizon is teleological in nature, meaning that it is determined by future causes. [14] [15] [16] More precisely, one would need to know the entire history of the universe and all the way into the infinite future to determine the presence of an event horizon, which is not possible for quasilocal observers (not even in principle).

  4. Absolute horizon - Wikipedia

    en.wikipedia.org/wiki/Absolute_horizon

    In general relativity, an absolute horizon is a boundary in spacetime, defined with respect to the external universe, inside which events cannot affect an external observer. Light emitted inside the horizon can never reach the observer, and anything that passes through the horizon from the observer's side is never seen again by the observer.

  5. Horizon - Wikipedia

    en.wikipedia.org/wiki/Horizon

    For radar (e.g. for wavelengths 300 to 3 mm i.e. frequencies between 1 and 100 GHz) the radius of the Earth may be multiplied by 4/3 to obtain an effective radius giving a factor of 4.12 in the metric formula i.e. the radar horizon will be 15% beyond the geometrical horizon or 7% beyond the visual. The 4/3 factor is not exact, as in the visual ...

  6. Kerr metric - Wikipedia

    en.wikipedia.org/wiki/Kerr_metric

    The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

  7. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  8. Horizon (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Horizon_(general_relativity)

    A horizon is a boundary in spacetime satisfying prescribed conditions. There are several types of horizons that play a role in Albert Einstein 's theory of general relativity : Absolute horizon , a boundary in spacetime in general relativity inside of which events cannot affect an external observer

  9. Particle horizon - Wikipedia

    en.wikipedia.org/wiki/Particle_horizon

    The particle horizon (also called the cosmological horizon, the comoving horizon (in Scott Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe.