Search results
Results From The WOW.Com Content Network
In the hypothalamic–adenohypophyseal axis, releasing hormones, also known as hypophysiotropic or hypothalamic hormones, are released from the median eminence, a prolongation of the hypothalamus, into the hypophyseal portal system, which carries them to the anterior pituitary where they exert their regulatory functions on the secretion of ...
The TSH, in turn, stimulates the thyroid to produce thyroid hormone until levels in the blood return to normal. Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland. [2]
The hypothalamus produces the hormones oxytocin and vasopressin in its endocrine cells (left). These are released at nerve endings in the posterior pituitary gland and then secreted into the systemic circulation. The hypothalamus releases tropic hormones into the hypophyseal portal system to the anterior pituitary (right).
LH binds to the interstitial cells, causing them to secrete testosterone. Testosterone is required for normal spermatogenesis and inhibits the hypothalamus. Inhibin is produced by the spermatogenic cells, which, also through inactivating activin, inhibits the hypothalamus. After puberty these hormones levels remain relatively constant.
For example, thyrotropin-releasing hormone (TRH) is released from the hypothalamus in response to low levels of secretion of thyroid-stimulating hormone (TSH) from the pituitary gland. The TSH in turn is under feedback control by the thyroid hormones T4 and T3. When the level of TSH is too high, they feed back on the brain to shut down the ...
Schematic of the HPA axis (CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone) Hypothalamus, pituitary gland, and adrenal cortex The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a ...
The endocrine system [1] is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems.
The hypophyseal portal system is a system of blood vessels in the microcirculation at the base of the brain, connecting the hypothalamus with the anterior pituitary. Its main function is to quickly transport and exchange hormones between the hypothalamus arcuate nucleus and anterior pituitary gland.