When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Atomic electron transition - Wikipedia

    en.wikipedia.org/wiki/Atomic_electron_transition

    In atomic physics and chemistry, an atomic electron transition (also called an atomic transition, quantum jump, or quantum leap) is an electron changing from one energy level to another within an atom [1] or artificial atom. [2] The time scale of a quantum jump has not been measured experimentally.

  3. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    An electron in the lowest energy level of hydrogen (n = 1) therefore has about 13.6 eV less energy than a motionless electron infinitely far from the nucleus. The next energy level (n = 2) is −3.4 eV. The third (n = 3) is −1.51 eV, and so on.

  4. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    The energy levels of an electron around a nucleus are given by: ... resulting in a typical change in the energy levels by a typical order of magnitude of 10 −4 ...

  5. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy [1] or by collisional excitation (CE), where the electron receives energy from a collision with another, energetic electron. [2]

  6. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    Probability densities for the first few hydrogen atom orbitals, seen in cross-section. The energy level of a bound electron determines the orbital it occupies, and the color reflects the probability of finding the electron at a given position. An electron can be bound to the nucleus of an atom by the attractive Coulomb force. A system of one or ...

  7. Excited state - Wikipedia

    en.wikipedia.org/wiki/Excited_state

    Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).

  8. Hyperfine structure - Wikipedia

    en.wikipedia.org/wiki/Hyperfine_structure

    In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

  9. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    In a simplistic one-electron model described below, the total energy of an electron is a negative inverse quadratic function of the principal quantum number n, leading to degenerate energy levels for each n > 1. [1] In more complex systems—those having forces other than the nucleus–electron Coulomb force—these levels split.