Search results
Results From The WOW.Com Content Network
Multiple scattering low coherence interferometry (ms/LCI) is an imaging technique that relies on analyzing multiply scattered light in order to capture depth-resolved images from optical scattering media.
Optical coherence tomography (OCT) is a medical imaging technique using low-coherence interferometry to provide tomographic visualization of internal tissue microstructures. As seen in Fig. 22, the core of a typical OCT system is a Michelson interferometer.
Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...
Angle-resolved low-coherence interferometry (a/LCI) is an emerging [when?] biomedical imaging technology which uses the properties of scattered light to measure the average size of cell structures, including cell nuclei. The technology shows promise as a clinical tool for in situ detection of dysplastic, or precancerous tissue.
Figure 2. File:Twyman-Green interferometer set up as a white light scanner. Vertical scanning interferometry is an example of low-coherence interferometry, which exploits the low coherence of white light. Interference will only be achieved when the path length delays of the interferometer are matched within the coherence time of the light source.
Another application of the Michelson interferometer is in optical coherence tomography (OCT), a medical imaging technique using low-coherence interferometry to provide tomographic visualization of internal tissue microstructures. As seen in Fig. 8, the core of a typical OCT system is a Michelson interferometer.
Optical coherence tomography (OCT) represents a powerful clinical tool for monitoring retinal physiology in patients. OCT uses low coherence interferometry to differentiate tissues within the eye and create a cross section of a living patients’ retina non-invasively. [21] It actually has greater axial resolution than AOSLO. [22]
Mie theory has been used to determine whether scattered light from tissue corresponds to healthy or cancerous cell nuclei using angle-resolved low-coherence interferometry. Clinical laboratory analysis