Search results
Results From The WOW.Com Content Network
In materials science, an intrinsic property is independent of how much of a material is present and is independent of the form of the material, e.g., one large piece or a collection of small particles. Intrinsic properties are dependent mainly on the fundamental chemical composition and structure of the material. [1]
Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness, η. By contrast, an extensive property or extensive quantity is one whose magnitude is additive for subsystems. [4] Examples include mass, volume and entropy. [5] Not all properties of matter fall into these two categories.
Some physical properties are qualitative, such as shininess, brittleness, etc.; some general qualitative properties admit more specific related quantitative properties, such as in opacity, hardness, ductility, viscosity, etc. Physical properties are often characterized as intensive and extensive properties. An intensive property does not depend ...
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter , as well as the changes it undergoes during chemical reactions ...
Permeability, or intrinsic permeability, (k, unit: m 2) is a part of this, and is a specific property characteristic of the solid skeleton and the microstructure of the porous medium itself, independently of the nature and properties of the fluid flowing through the pores of the medium.
Thermodynamic properties are defined as characteristic features of a system, capable of specifying the system's state. Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties.
Spin is an intrinsic property of elementary particles, and its direction is an important degree of freedom. It is sometimes visualized as the rotation of an object around its own axis (hence the name " spin "), though this notion is somewhat misguided at subatomic scales because elementary particles are believed to be point-like .