Search results
Results From The WOW.Com Content Network
The most important features of the light source are its wavelength and coherence length. The coherence length determines the width of the correlogram, which relies on the spectral width of the light source, as well as on structural aspects such as the spatial coherence of the light source and the numerical aperture (NA) of the optical system ...
The advantages of white light, which produced a distinctive colored fringe pattern, far outweighed the difficulties of aligning the apparatus due to its low coherence length. [29] This was an early example of the use of white light to resolve the "2 pi ambiguity".
Figure 2. File:Twyman-Green interferometer set up as a white light scanner. Vertical scanning interferometry is an example of low-coherence interferometry, which exploits the low coherence of white light. Interference will only be achieved when the path length delays of the interferometer are matched within the coherence time of the light source.
Early implementations of ms/LCI were in the time domain using lock-in detection in order to take advantage of long scanning depths as well narrow detection bandwidths. [2] As in traditional OCT, the beam interference coherence gates the light in order to filter out photons that have not traveled a sufficient path length.
Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...
White light interferometry is commonly used for detecting deformations of the wafer surface based on optical measurements. Low-coherence light from a white light source passes through the optical top wafer, e.g. glass wafer, to the bond interface. Usually there are three different white light interferometers: diffraction grating interferometers
Backscattered light is then collimated by the same lens and collected by the fiber bundle. The fibers are one focal length from the lens, and the sample is one focal length on the other side. This configuration captures light from the maximum range of angles and minimizes light noise due to specular reflections.
If the surface is rough enough to create path-length differences exceeding one wavelength, giving rise to phase changes greater than 2π, the amplitude, and hence the intensity, of the resultant light varies randomly. If light of low coherence (i.e., made up of many wavelengths) is used, a speckle pattern will not normally be observed, because ...