Search results
Results From The WOW.Com Content Network
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
The quadratic formula can equivalently be written using various alternative expressions, for instance = (), which can be derived by first dividing a quadratic equation by , resulting in + + = , then substituting the new coefficients into the standard quadratic formula.
() = + is called the vertex form, where h and k are the x and y coordinates of the vertex, respectively. The coefficient a is the same value in all three forms. To convert the standard form to factored form , one needs only the quadratic formula to determine the two roots r 1 and r 2 .
In geometry, an apex (pl.: apices) is the vertex which is in some sense the "highest" of the figure to which it belongs. The term is typically used to refer to the vertex opposite from some "base". The word is derived from the Latin for 'summit, peak, tip, top, extreme end'. The term apex may used in different contexts:
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory.In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.
In the geometry of plane curves, a vertex is a point of where the first derivative of curvature is zero. [1] This is typically a local maximum or minimum of curvature, [ 2 ] and some authors define a vertex to be more specifically a local extremum of curvature. [ 3 ]
3. In the logic of graphs, a vertex that is universally quantified in a formula may be called a universal vertex for that formula. unweighted graph A graph whose vertices and edge s have not been assigned weight s; the opposite of a weighted graph. utility graph The utility graph is a name for the complete bipartite graph,.
In these formulas, the signed value of area must be used. For triangles ( n = 3 ), the centroids of the vertices and of the solid shape are the same, but, in general, this is not true for n > 3 . The centroid of the vertex set of a polygon with n vertices has the coordinates