Search results
Results From The WOW.Com Content Network
The absorption neutron cross section of an isotope of a chemical element is the effective cross-sectional area that an atom of that isotope presents to absorption and is a measure of the probability of neutron capture. It is usually measured in barns. Absorption cross section is often highly dependent on neutron energy. In general, the ...
Thermal neutrons have a different and sometimes much larger effective neutron absorption cross-section for a given nuclide than fast neutrons, and can therefore often be absorbed more easily by an atomic nucleus, creating a heavier, often unstable isotope of the chemical element as a result. This event is called neutron activation.
Neutron transport (also known as neutronics) is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving.
The control rods absorb neutrons without undergoing any nuclear reactions. They’re like sponges absorbing the neutrons that would be bouncing around, making more chain reactions.
The neutrons in nuclear reactors are generally categorized as slow (thermal) neutrons or fast neutrons depending on their energy. Thermal neutrons are similar in energy distribution (the Maxwell–Boltzmann distribution ) to a gas in thermodynamic equilibrium ; but are easily captured by atomic nuclei and are the primary means by which elements ...
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
A fast neutron reactor uses fast neutrons, so it does not use a moderator. Moderators may absorb a lot of neutrons in a thermal reactor, and fast fission produces a higher average number of neutrons per fission, so fast reactors have better neutron economy making a plutonium breeder reactor possible.
If the fission requires an input of energy, that comes from the kinetic energy of the neutron. An example of this kind of fission in a light element can occur when the stable isotope of lithium, lithium-7, is bombarded with fast neutrons and undergoes the following nuclear reaction: 7 3 Li + 1 0 n → 4 2 He + 3 1 H + 1 0 n + gamma rays ...