When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cell-free protein synthesis - Wikipedia

    en.wikipedia.org/wiki/Cell-free_protein_synthesis

    Cell-free protein synthesis, also known as in vitro protein synthesis or CFPS, is the production of protein using biological machinery in a cell-free system, that is, without the use of living cells. The in vitro protein synthesis environment is not constrained by a cell wall or homeostasis conditions necessary to maintain cell viability. [ 1 ]

  3. Mesoderm - Wikipedia

    en.wikipedia.org/wiki/Mesoderm

    The intermediate mesoderm connects the paraxial mesoderm with the lateral plate mesoderm, and differentiates into urogenital structures. [12] In upper thoracic and cervical regions, this forms the nephrotomes. In caudal regions, it forms the nephrogenic cord. It also helps to develop the excretory units of the urinary system and the gonads. [4]

  4. Cell-free protein array - Wikipedia

    en.wikipedia.org/wiki/Cell-free_protein_array

    Cell-free protein array technology produces protein microarrays by performing in vitro synthesis of the target proteins from their DNA templates. This method of synthesizing protein microarrays overcomes the many obstacles and challenges faced by traditional methods of protein array production [1] that have prevented widespread adoption of protein microarrays in proteomics.

  5. Epithelial–mesenchymal transition - Wikipedia

    en.wikipedia.org/wiki/Epithelial–mesenchymal...

    Since gastrulation is a very rapid process, E-cadherin is repressed transcriptionally by Twist and SNAI1 (commonly called Snail), and at the protein level by P38 interacting protein. The primitive streak, through invagination, further generates mesoendoderm, which separates to form a mesoderm and an endoderm, again through EMT.

  6. Organogenesis - Wikipedia

    en.wikipedia.org/wiki/Organogenesis

    In vitro and in response to specific cocktails of hormones (mainly auxins and cytokinins), most plant tissues can de-differentiate and form a mass of dividing totipotent stem cells called a callus. Organogenesis can then occur from those cells. The type of organ that is formed depends on the relative concentrations of the hormones in the medium.

  7. Stem cell - Wikipedia

    en.wikipedia.org/wiki/Stem_cell

    This process starts with the differentiation into the three germ layers – the ectoderm, mesoderm and endoderm – at the gastrulation stage. However, when they are isolated and cultured in vitro, they can be kept in the stem-cell stage and are known as embryonic stem cells (ESCs).

  8. Xbra - Wikipedia

    en.wikipedia.org/wiki/Xbra

    Xbra is a homologue of Brachyury (T) gene for Xenopus. [1] It is a transcription activator involved in vertebrate gastrulation which controls posterior mesoderm patterning and notochord differentiation by activating transcription of genes expressed throughout mesoderm. [2]

  9. Fibroblast growth factor and mesoderm formation - Wikipedia

    en.wikipedia.org/wiki/Fibroblast_growth_factor...

    This article is about the role of fibroblast growth factor signaling in mesoderm formation.. Mesoderm formation is a complex developmental process involving an intricate network of signaling pathways that coordinate their activities to ensure that a selective group of cells will eventually give rise to mesodermal tissues in the adult organism.