Ads
related to: sound wave detector online
Search results
Results From The WOW.Com Content Network
Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).
An acoustic mirror is a passive device used to reflect and focus (concentrate) sound waves. Parabolic acoustic mirrors are widely used in parabolic microphones to pick up sound from great distances, employed in surveillance and reporting of outdoor sporting events.
Surface acoustic wave sensors are a class of microelectromechanical systems (MEMS) which rely on the modulation of surface acoustic waves to sense a physical phenomenon. The sensor transduces an input electrical signal into a mechanical wave which, unlike an electrical signal, can be easily influenced by physical phenomena.
Systems typically use a transducer that generates sound waves in the ultrasonic range, above 20 kHz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed. This technology, as well, can detect approaching objects and track their positions. [2]
Ultrasound is sound with frequencies greater than 20 kilohertz. [1] This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.
During the 1930s American engineers developed their own underwater sound-detection technology, and important discoveries were made, such as the existence of thermoclines and their effects on sound waves. [18] Americans began to use the term SONAR for their systems, coined by Frederick Hunt to be the equivalent of RADAR. [19]