When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The parabola opens upward. It is shown elsewhere in this article that the equation of the parabola is 4fy = x 2, where f is the focal length. At the positive x end of the chord, x = ⁠ c / 2 ⁠ and y = d. Since this point is on the parabola, these coordinates must satisfy the equation above.

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Conic sections of varying eccentricity sharing a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated pair of lines.

  4. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.

  5. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  6. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    A: vertex of the red parabola and focus of the blue parabola F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either an ellipse and a hyperbola, where the hyperbola is contained in a plane, which is orthogonal to the plane containing the ellipse. The vertices of ...

  7. Kiepert conics - Wikipedia

    en.wikipedia.org/wiki/Kiepert_conics

    Property 4, simulation with K moved on the Kiepert hyperbola and P moved on the FK, F=X(14)-the first Fermat point The center of the Kiepert hyperbola lies on the nine-point circle . The center is the midpoint of the line segment joining the isogonic centers of triangle A B C {\displaystyle ABC} which are the triangle centers X(13) and X(14) in ...

  8. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    In an ellipse, the semi-major axis is the geometric mean of the distance from the center to either focus and the distance from the center to either directrix. The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is ...

  9. Dandelin spheres - Wikipedia

    en.wikipedia.org/wiki/Dandelin_spheres

    Neither Dandelin nor Quetelet used the Dandelin spheres to prove the focus-directrix property. The first to do so may have been Pierce Morton in 1829, [8] or perhaps Hugh Hamilton who remarked (in 1758) that a sphere touches the cone at a circle which defines a plane whose intersection with the plane of the conic section is a directrix.