Search results
Results From The WOW.Com Content Network
To generate the line that bisects the angle between two given rays [clarification needed] requires a circle of arbitrary radius centered on the intersection point P of the two lines (2). The intersection points of this circle with the two given lines (5) are T1 and T2. Two circles of the same radius, centered on T1 and T2, intersect at points P ...
Creating the one point or two points in the intersection of two circles (if they intersect). For example, starting with just two distinct points, we can create a line or either of two circles (in turn, using each point as centre and passing through the other point). If we draw both circles, two new points are created at their intersections.
The navigational algorithms are the quintessence of the executable software on portable calculators or smartphones as an aid to the art of navigation, this attempt article describe both algorithms and software for smartphones implementing different calculation procedures for navigation. The calculation power obtained by the languages—Basic, C ...
intersection of two polygons: window test. If one wants to determine the intersection points of two polygons, one can check the intersection of any pair of line segments of the polygons (see above). For polygons with many segments this method is rather time-consuming. In practice one accelerates the intersection algorithm by using window tests ...
D, the other point of intersection of the two circles, is the reflection of C across the line AB. If C = D (that is, there is a unique point of intersection of the two circles), then C is its own reflection and lies on the line AB (contrary to the assumption), and the two circles are internally tangential.
In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H.In such a configuration the circles usually have a total of four intersections (points where at least two of them meet): the common point H that they all share, and for each of the three pairs of circles one more intersection point (referred here as their 2-wise intersection).
For any two circles in a plane, an external tangent is a line that is tangent to both circles but does not pass between them. There are two such external tangent lines for any two circles. Each such pair has a unique intersection point in the extended Euclidean plane. Monge's theorem states that the three such points given by the three pairs of ...
The intersection points between any line and the given circle (or given arc of a circle) may be found directly, as can the intersection points between the arcs of two circles, if provided. The Poncelet-Steiner Theorem does not prohibit the normal treatment of circles already drawn in the plane; normal construction rules apply.