When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The "decimal" data type of the C# and Python programming languages, and the decimal formats of the IEEE 754-2008 standard, are designed to avoid the problems of binary floating-point representations when applied to human-entered exact decimal values, and make the arithmetic always behave as expected when numbers are printed in decimal.

  3. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Java: Class java.math.BigInteger (integer), java.math.BigDecimal Class (decimal) JavaScript: as of ES2020, BigInt is supported in most browsers; [2] the gwt-math library provides an interface to java.math.BigDecimal, and libraries such as DecimalJS, BigInt and Crunch support arbitrary-precision integers.

  4. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    2.3434E−6 = 2.3434 × 10 −6 = 2.3434 × 0.000001 = 0.0000023434. The advantage of this scheme is that by using the exponent we can get a much wider range of numbers, even if the number of digits in the significand, or the "numeric precision", is much smaller than the range. Similar binary floating-point formats can be defined for computers.

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system.

  6. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    00000000000 2 =000 16 is used to represent a signed zero (if F = 0) and subnormal numbers (if F ≠ 0); and; 11111111111 2 =7ff 16 is used to represent ∞ (if F = 0) and NaNs (if F ≠ 0), where F is the fractional part of the significand. All bit patterns are valid encoding. Except for the above exceptions, the entire double-precision number ...

  7. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...

  8. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    This decimal format can also represent any binary fraction a/2 m, such as 1/8 (0.125) or 17/32 (0.53125). More generally, a rational number a / b , with a and b relatively prime and b positive, can be exactly represented in binary fixed point only if b is a power of 2; and in decimal fixed point only if b has no prime factors other than 2 and/or 5.

  9. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The two options allow the significand to be encoded as a compressed sequence of decimal digits using densely packed decimal or, alternatively, as a binary integer. The former is more convenient for direct hardware implementation of the standard, while the latter is more suited to software emulation on a binary computer.