Search results
Results From The WOW.Com Content Network
The set of APIs used to compile, link, and pass parameters to GLSL programs are specified in three OpenGL extensions, and became part of core OpenGL as of OpenGL Version 2.0. The API was expanded with geometry shaders in OpenGL 3.2, tessellation shaders in OpenGL 4.0 and compute shaders in OpenGL 4.3. These OpenGL APIs are found in the extensions:
The most important shader units are vertex shaders, geometry shaders, and pixel shaders. The Unified Shader has been introduced to take full advantage of all units. This gives a single large pool of shader units. As required, the pool is divided into different groups of shaders. A strict separation between the shader types is therefore no ...
The unified shader model uses the same hardware resources for both vertex and fragment processing. In the field of 3D computer graphics, the unified shader model (known in Direct3D 10 as "Shader Model 4.0") refers to a form of shader hardware in a graphical processing unit (GPU) where all of the shader stages in the rendering pipeline (geometry, vertex, pixel, etc.) have the same capabilities.
This shader works by replacing all light areas of the image with white, and all dark areas with a brightly colored texture. In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading.
OpenGL 4.0 was released alongside version 3.3. It was designed for hardware able to support Direct3D 11. As in OpenGL 3.0, this version of OpenGL contains a high number of fairly inconsequential extensions, designed to thoroughly expose the abilities of Direct3D 11-class hardware. Only the most influential extensions are listed below.
The Blinn–Phong reflection model, also called the modified Phong reflection model, is a modification developed by Jim Blinn to the Phong reflection model. [1]Blinn–Phong is a shading model used in OpenGL and Direct3D's fixed-function pipeline (before Direct3D 10 and OpenGL 3.1), and is carried out on each vertex as it passes down the graphics pipeline; pixel values between vertices are ...
Sophisticated applications allow savvy users to write custom shaders in a shading language such as HLSL or GLSL, though increasingly node-based material editors that allow a graph-based workflow with native support for important concepts such as light position, levels of reflection and emission and metallicity, and a wide range of other math ...
DirectX 10 (Shader Model 4) and Cg 2.0 introduced geometry shaders. [6] DirectX 11 (Shader Model 5) introduced compute shaders and tessellation shaders (hull and domain). The latter is present in Cg 3.1. DirectX 12 (Shader Model 6.3) introduced ray tracing shaders (ray generation, intersection, bit / closest hit / miss).