When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    As the Riemann function is differentiable only on a null set of points, ... Weierstrass functions: continuous but not differentiable anywhere;

  3. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  4. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    It may not be "differentiable almost everywhere" (like the Weierstrass function, which is not differentiable anywhere). Or it may be differentiable almost everywhere and its derivative f ′ may be Lebesgue integrable, but the integral of f ′ differs from the increment of f (how much f changes over an interval).

  5. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  6. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...

  7. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.

  8. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...

  9. Cauchy–Riemann equations - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Riemann_equations

    For example, [8] the function (,) = | |, regarded as a complex function with imaginary part identically zero, has both partial derivatives at (,) = (,), and it moreover satisfies the Cauchy–Riemann equations at that point, but it is not differentiable in the sense of real functions (of several variables), and so the first condition, that of ...