When.com Web Search

  1. Ad

    related to: how do prisms make rainbows

Search results

  1. Results From The WOW.Com Content Network
  2. Dispersive prism - Wikipedia

    en.wikipedia.org/wiki/Dispersive_prism

    In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components (the colors of the rainbow). Different wavelengths (colors) of light will be deflected by the prism at different angles. [ 1 ]

  3. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Prism spectacles with a single prism perform a relative displacement of the two eyes, thereby correcting eso-, exo, hyper- or hypotropia. In contrast, spectacles with prisms of equal power for both eyes, called yoked prisms (also: conjugate prisms , ambient lenses or performance glasses ) shift the visual field of both eyes to the same extent.

  4. Rainbow - Wikipedia

    en.wikipedia.org/wiki/Rainbow

    However, light coming out the back of the raindrop does not create a rainbow between the observer and the Sun because spectra emitted from the back of the raindrop do not have a maximum of intensity, as the other visible rainbows do, and thus the colours blend together rather than forming a rainbow. [22]

  5. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]

  6. Refraction - Wikipedia

    en.wikipedia.org/wiki/Refraction

    Rainbows are formed by dispersion of light, in which the refraction angle depends on the light's frequency. Refraction is also responsible for rainbows and for the splitting of white light into a rainbow-spectrum as it passes through a glass prism. Glass and water have higher refractive indexes than air.

  7. ROYGBIV - Wikipedia

    en.wikipedia.org/wiki/ROYGBIV

    ROYGBIV is an acronym for the sequence of hues commonly described as making up a rainbow: red, orange, yellow, green, blue, indigo, and violet. When making an artificial rainbow, glass prism is used, but the colors of "ROY-G-BIV" are inverted to VIB-G-YOR".

  8. Atmospheric optics - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_optics

    Rainbows. These result from a combination of internal reflection and dispersive refraction of light in raindrops. Because rainbows are seen on the opposite side of the sky from the Sun, rainbows are more visible the closer the Sun is to the horizon. For example, if the Sun is overhead, any possible rainbow appears near an observer's feet ...

  9. Visible spectrum - Wikipedia

    en.wikipedia.org/wiki/Visible_spectrum

    In the 13th century, Roger Bacon theorized that rainbows were produced by a similar process to the passage of light through glass or crystal. [11] In the 17th century, Isaac Newton discovered that prisms could disassemble and reassemble white light, and described the phenomenon in his book Opticks.