Search results
Results From The WOW.Com Content Network
Although the main definition of the gamma function—the Euler integral of the second kind—is only valid (on the real axis) for positive arguments, its domain can be extended with analytic continuation [13] to negative arguments by shifting the negative argument to positive values by using either the Euler's reflection formula ...
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16): [1]
The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to the gamma function. [3] For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835, [ 4 ] and Augustus De Morgan used it in a textbook published in parts ...
Contour plot of the beta function. In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients.
The Euler integral of the second kind is the gamma function [2] = For positive integers m and n , the two integrals can be expressed in terms of factorials and binomial coefficients : B ( n , m ) = ( n − 1 ) !
The classical gamma function satisfies the functional equation (+) = for any .This has an analogue with respect to the Morita gamma function: (+) = {,,.The Euler's reflection formula () = has its following simple counterpart in the p-adic case:
The cumulative distribution function is the regularized gamma function ... γ is the Euler ... the log-gamma distribution. [20] Formulas for its mean and ...