Search results
Results From The WOW.Com Content Network
A more difficult subset of the problem consists of executing range queries on dynamic data; that is, data that may mutate between each query. In order to efficiently update array values, more sophisticated data structures like the segment tree or Fenwick tree are necessary.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …
Given a solver for 3SUM, the Conv3SUM problem can be solved in the following way. [10] Define a new array T, such that for every index i: [] = [] + (where n is the number of elements in the array, and the indices run from 0 to n-1). Solve 3SUM on the array T. Correctness proof:
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Euler may have sensed what makes this problem counterintuitively hard to solve. When you look at larger numbers, they have more ways of being written as sums of primes, not less. Like how 3+5 is ...
Several lower bounds in computational complexity are proved by reducing the element distinctness problem to the problem in question, i.e., by demonstrating that the solution of the element uniqueness problem may be quickly found after solving the problem in question.
The divide-and-conquer paradigm is often used to find an optimal solution of a problem. Its basic idea is to decompose a given problem into two or more similar, but simpler, subproblems, to solve them in turn, and to compose their solutions to solve the given problem. Problems of sufficient simplicity are solved directly.