When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will begin with ⌈ √ n ⌉ = 18848997159 which immediately yields b = √ a 2 − n = √ 4 = 2 and hence the factors a − b = 18848997157 and a + b = 18848997161.

  3. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    Animation demonstrating the smallest Pythagorean triple, 3 2 + 4 2 = 5 2. A Pythagorean triple consists of three positive integers a, b, and c, such that a 2 + b 2 = c 2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    It is also not a multiple of 5 because its last digit is 7. The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is ...

  5. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    999 = 3 3 ×37, 1000 = 2 3 ×5 3, 1001 = 7×11×13. Factors p 0 = 1 may be inserted without changing the value of n (for example, 1000 = 2 3 ×3 0 ×5 3). In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers, as

  6. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    There are eight factorizations of 6 (four each for 1×6 and 2×3), making a total of 4×4×8 = 128 possible triples (p(0), p(1), p(−1)), of which half can be discarded as the negatives of the other half. Thus, we must check 64 explicit integer polynomials () = + + as possible factors of (). Testing them exhaustively reveals that

  7. Powerful number - Wikipedia

    en.wikipedia.org/wiki/Powerful_number

    2 = 3 3 − 5 2 10 = 13 33 7 18 = 19 2 − 7 3 = 3 5 − 15 2. It had been conjectured that 6 cannot be so represented, and Golomb conjectured that there are infinitely many integers which cannot be represented as a difference between two powerful numbers. However, Narkiewicz showed that 6 can be so represented in infinitely many ways such as

  8. Pythagorean quadruple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_quadruple

    If a and b have different parity, let p be any factor of a 2 + b 2 such that p 2 < a 2 + b 2. Then c = ⁠ a 2 + b 2 − p 2 / 2p ⁠ and d = ⁠ a 2 + b 2 + p 2 / 2p ⁠. Note that p = d − c. A similar method exists [5] for generating all Pythagorean quadruples for which a and b are both even. Let l = ⁠ a / 2 ⁠ and m = ⁠ b / 2 ⁠ and ...

  9. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    For instance, the product of three factors of two (2×2×2) is "two raised to the third power", and is denoted by 2 3, a two with a superscript three. In this example, the number two is the base, and three is the exponent. [26] In general, the exponent (or superscript) indicates how many times the base appears in the expression, so that the ...