Search results
Results From The WOW.Com Content Network
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR gate. [1] It is equivalent to the logical connective ( ↔ {\displaystyle \leftrightarrow } ) from mathematical logic , also known as the material biconditional.
Logical equality is a logical operator that compares two truth values, or more generally, two formulas, such that it gives the value True if both arguments have the same truth value, and False if they are different.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
A standard LFSR has a single XOR or XNOR gate, where the input of the gate is connected to several "taps" and the output is connected to the input of the first flip-flop. A MISR has the same structure, but the input to every flip-flop is fed through an XOR/XNOR gate. For example, a 4-bit MISR has a 4-bit parallel output and a 4-bit parallel input.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
The symbol used for exclusive disjunction varies from one field of application to the next, and even depends on the properties being emphasized in a given context of discussion. In addition to the abbreviation "XOR", any of the following symbols may also be seen: + was used by George Boole in 1847. [6]
For example, NOR (the negation of the disjunction, sometimes denoted ) can be expressed as conjunction of two negations: A ↓ B := ¬ A ∧ ¬ B {\displaystyle A\downarrow B:=\neg A\land \neg B} Similarly, the negation of the conjunction, NAND (sometimes denoted as ↑ {\displaystyle \uparrow } ), can be defined in terms of disjunction and ...
Some programming languages, e.g., Ada, have short-circuit Boolean operators. These operators use a lazy evaluation, that is, if the value of the expression can be determined from the left hand Boolean expression then they do not evaluate the right hand Boolean expression.