Search results
Results From The WOW.Com Content Network
Any object whose radius is smaller than its Schwarzschild radius is called a black hole. The surface at the Schwarzschild radius acts as an event horizon in a non-rotating body (a rotating black hole operates slightly differently). Neither light nor particles can escape through this surface from the region inside, hence the name "black hole".
In these coordinates, the horizon is the black hole horizon (nothing can come out). The diagram for u-r coordinates is the same diagram turned upside down and with u and v interchanged on the diagram. In that case the horizon is the white hole horizon, which matter and light can come out of, but nothing can go in.
English: The Schwarzschild interior (blue) and exterior (black) solutions. r s : Schwarzschild radius; r g : r -coordinate on the body's surface; ℛ 2 = r g 3 / r s ; sin η g = r g /ℛ Date
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
This is just an artifact of how Schwarzschild coordinates are defined; a free-falling particle will only take a finite proper time (time as measured by its own clock) to pass between an outside observer and an event horizon, and if the particle's world line is drawn in the Kruskal–Szekeres diagram this will also only take a finite coordinate ...
In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres.In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres.
The defining characteristic of an isotropic chart is that its radial coordinate (which is different from the radial coordinate of a Schwarzschild chart) is defined so that light cones appear round. This means that (except in the trivial case of a locally flat manifold), the angular isotropic coordinates do not faithfully represent distances ...
Chernoff faces, invented by applied mathematician, statistician, and physicist Herman Chernoff in 1973, display multivariate data in the shape of a human face. The individual parts, such as eyes, ears, mouth, and nose represent values of the variables by their shape, size, placement, and orientation.