When.com Web Search

  1. Ads

    related to: define second countable space in math worksheets 5th

Search results

  1. Results From The WOW.Com Content Network
  2. Second-countable space - Wikipedia

    en.wikipedia.org/wiki/Second-countable_space

    In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base.More explicitly, a topological space is second-countable if there exists some countable collection = {} = of open subsets of such that any open subset of can be written as a union of elements of some subfamily of .

  3. Axiom of countability - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_countability

    sequential space: a set is closed if and only if every convergent sequence in the set has its limit point in the set; first-countable space: every point has a countable neighbourhood basis (local base) second-countable space: the topology has a countable base; separable space: there exists a countable dense subset

  4. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    second-countable space: the topology has a countable base; separable space: there exists a countable dense subspace; Lindelöf space: every open cover has a countable subcover; σ-compact space: there exists a countable cover by compact spaces; Relations: Every first countable space is sequential. Every second-countable space is first-countable ...

  5. Separable space - Wikipedia

    en.wikipedia.org/wiki/Separable_space

    Conversely, a metrizable space is separable if and only if it is second countable, which is the case if and only if it is Lindelöf. To further compare these two properties: An arbitrary subspace of a second-countable space is second countable; subspaces of separable spaces need not be separable (see below).

  6. Locally finite collection - Wikipedia

    en.wikipedia.org/wiki/Locally_finite_collection

    The σ-locally finite notion is a key ingredient in the Nagata–Smirnov metrization theorem, which states that a topological space is metrizable if and only if it is regular, Hausdorff, and has a σ-locally finite base. [9] [10] In a Lindelöf space, in particular in a second-countable space, every σ-locally finite collection of sets is ...

  7. Lindelöf's lemma - Wikipedia

    en.wikipedia.org/wiki/Lindelöf's_lemma

    Lindelöf's lemma is also known as the statement that every open cover in a second-countable space has a countable subcover (Kelley 1955:49). This means that every second-countable space is also a Lindelöf space.

  8. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    Assume such a space X is σ-compact. Then it is Lindelöf, and because Lindelöf + regular implies paracompact, X is metrizable. But in a metrizable space, second-countability coincides with being Lindelöf, so X is second-countable. Conversely, if X is a Hausdorff second-countable manifold, it must be σ-compact. [5]

  9. Topological group - Wikipedia

    en.wikipedia.org/wiki/Topological_group

    G is a second countable locally compact (Hausdorff) space. G is a Polish, locally compact (Hausdorff) space. G is properly metrisable (as a topological space). There is a left-invariant, proper metric on G that induces the given topology on G. Note: As with the rest of the article we of assume here a Hausdorff topology.