When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    To find the angle of a rotation, once the axis of the rotation is known, select a vector v perpendicular to the axis. Then the angle of the rotation is the angle between v and Rv. A more direct method, however, is to simply calculate the trace: the sum of the diagonal elements of the rotation

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ ⁡ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...

  4. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  5. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    Any central rotation in three dimensions is uniquely determined by its axis of rotation (represented by a unit vector k → = (k x, k y, k z)) and the rotation angle φ.The Euler parameters for this rotation are calculated as follows:

  6. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    The vector part of a unit quaternion represents the radius of the 2-sphere corresponding to the axis of rotation, and its magnitude is the sine of half the angle of rotation. Each rotation is represented by two unit quaternions of opposite sign, and, as in the space of rotations in three dimensions, the quaternion product of two unit ...

  8. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. [ 1 ] They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in three dimensional linear algebra .

  9. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Even with these restrictions, if the polar angle (inclination) is 0° or 180°—elevation is −90° or +90°—then the azimuth angle is arbitrary; and if r is zero, both azimuth and polar angles are arbitrary. To define the coordinates as unique, the user can assert the convention that (in these cases) the arbitrary coordinates are set to zero.