Ads
related to: big data and analysis ppt freekorcomptenz.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
In many big data projects, there is no large data analysis happening, but the challenge is the extract, transform, load part of data pre-processing. [ 225 ] Big data is a buzzword and a "vague term", [ 226 ] [ 227 ] but at the same time an "obsession" [ 227 ] with entrepreneurs, consultants, scientists, and the media.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.
Data analysis uses specialized algorithms and statistical calculations that are less often observed in a typical general business environment. For data analysis, software suites like SPSS or SAS , or their free counterparts such as DAP , gretl , or PSPP are often used.
The TDWI big data maturity model is a model in the current big data maturity area and therefore consists of a significant body of knowledge. [6] Maturity stages. The different stages of maturity in the TDWI BDMM can be summarized as follows: Stage 1: Nascent. The nascent stage as a pre–big data environment. During this stage:
Educational data mining Cluster analysis is for example used to identify groups of schools or students with similar properties. Typologies From poll data, projects such as those undertaken by the Pew Research Center use cluster analysis to discern typologies of opinions, habits, and demographics that may be useful in politics and marketing.
Knowledge discovery is an iterative and interactive process used to identify, analyze and visualize patterns in data. [1] Network analysis, link analysis and social network analysis are all methods of knowledge discovery, each a corresponding subset of the prior method.
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."