When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Speeds of sound of the elements - Wikipedia

    en.wikipedia.org/wiki/Speeds_of_sound_of_the...

    The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]

  3. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  4. Signal-to-noise ratio - Wikipedia

    en.wikipedia.org/wiki/Signal-to-noise_ratio

    In the above formula, P is measured in units of power, such as watts (W) or milliwatts (mW), and the signal-to-noise ratio is a pure number. However, when the signal and noise are measured in volts (V) or amperes (A), which are measures of amplitude, [note 1] they must first be squared to obtain a quantity proportional to power, as shown below:

  5. Sound energy density - Wikipedia

    en.wikipedia.org/wiki/Sound_energy_density

    Sound energy density or sound density is the sound energy per unit volume. The SI unit of sound energy density is the pascal (Pa), which is 1 kg⋅m −1 ⋅s −2 in SI base units or 1 joule per cubic metre (J/m 3). [1]: Section 2.3.4: Derived units, Table 4

  6. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  7. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density:

  8. Sound intensity - Wikipedia

    en.wikipedia.org/wiki/Sound_intensity

    The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m 2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity. [3] Sound intensity is not the same physical quantity as sound pressure. Human hearing is sensitive to sound pressure which is ...

  9. Mach number - Wikipedia

    en.wikipedia.org/wiki/Mach_number

    c is the speed of sound in the medium, which in air varies with the square root of the thermodynamic temperature. By definition, at Mach 1, the local flow velocity u is equal to the speed of sound. At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic).