When.com Web Search

  1. Ad

    related to: 3d affine transformation matrix formula excel example problems

Search results

  1. Results From The WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  3. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    The similarity transformations form the subgroup where is a scalar times an orthogonal matrix. For example, if the affine transformation acts on the plane and if the determinant of is 1 or −1 then the transformation is an equiareal mapping. Such transformations form a subgroup called the equi-affine group. [13]

  4. Shear mapping - Wikipedia

    en.wikipedia.org/wiki/Shear_mapping

    Thus every shear matrix has an inverse, and the inverse is simply a shear matrix with the shear element negated, representing a shear transformation in the opposite direction. In fact, this is part of an easily derived more general result: if S is a shear matrix with shear element λ, then S n is a shear matrix whose shear element is simply nλ.

  5. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    Affine involutions can be categorized by the dimension of the affine space of fixed points; this corresponds to the number of values 1 on the diagonal of the similar matrix D (see above), i.e., the dimension of the eigenspace for eigenvalue 1. The affine involutions in 3D are: the identity; the oblique reflection in respect to a plane

  6. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision , where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix .

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  8. Improper rotation - Wikipedia

    en.wikipedia.org/wiki/Improper_rotation

    An indirect isometry is an affine transformation with an orthogonal matrix that has a determinant of −1. A proper rotation is an ordinary rotation. In the wider sense, a proper rotation is defined as a direct isometry; i.e., an element of E + (3): it can also be the identity, a rotation with a translation along the axis, or a pure translation ...

  9. Helmert transformation - Wikipedia

    en.wikipedia.org/wiki/Helmert_transformation

    The Helmert transformation (named after Friedrich Robert Helmert, 1843–1917) is a geometric transformation method within a three-dimensional space. It is frequently used in geodesy to produce datum transformations between datums. The Helmert transformation is also called a seven-parameter transformation and is a similarity transformation.