Ads
related to: vector calculus integral identitieswyzant.com has been visited by 10K+ users in the past month
- Our Powerful Online Tool
Interactive Features & Video Chat
Make Learning Easy. Try It Free.
- Helping Others Like You
We've Logged Over 6 Million Lessons
Read What Others Have to Say.
- Choose Your Tutor
Review Tutor Profiles, Ratings
And Reviews To Find a Perfect Match
- In a Rush? Instant Book
Tell us When You Need Help and
Connect With the Right Instructor
- Personalized Sessions
Name Your Subject, Find Your Tutor.
Customized 1-On-1 Instruction.
- Flexible Hours
Have a 15 Minute or 2 Hour Session.
Only Pay for the Time You Need.
- Our Powerful Online Tool
Search results
Results From The WOW.Com Content Network
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .
In single-variable calculus, the fundamental theorem of calculus establishes a link between the derivative and the integral. The link between the derivative and the integral in multivariable calculus is embodied by the integral theorems of vector calculus: [1]: 543ff Gradient theorem; Stokes' theorem; Divergence theorem; Green's theorem.
In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.
Replacing any index symbol throughout by another leaves the tensor equation unchanged (provided there is no conflict with other symbols already used). This can be useful when manipulating indices, such as using index notation to verify vector calculus identities or identities of the Kronecker delta and Levi-Civita symbol (see also below). An ...
Composable differentiable functions f : R n → R m and g : R m → R k satisfy the chain rule, namely () = (()) for x in R n. The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix , which in a sense is the " second derivative " of the function in question.