When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    In one dimension, both BB step sizes are equal and same as the classical secant method. The long BB step size is the same as a linearized Cauchy step, i.e. the first estimate using a secant-method for the line search (also, for linear problems). The short BB step size is same as a linearized minimum-residual step.

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

  4. Conjugate residual method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_residual_method

    It's a Krylov subspace method very similar to the much more popular conjugate gradient method, with similar construction and convergence properties. This method is used to solve linear equations of the form = where A is an invertible and Hermitian matrix, and b is nonzero.

  5. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    The Matlab function ode45 implements a one-step method that uses two embedded explicit Runge-Kutta methods with convergence orders 4 and 5 for step size control. [ 29 ] The solution can now be plotted, y 1 {\displaystyle y_{1}} as a blue curve and y 2 {\displaystyle y_{2}} as a red curve; the calculated points are marked by small circles:

  6. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...

  7. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if

  8. Aitken's delta-squared process - Wikipedia

    en.wikipedia.org/wiki/Aitken's_delta-squared_process

    One can also show that if a sequence converges to its limit at a rate strictly greater than 1, [] does not have a better rate of convergence. (In practice, one rarely has e.g. quadratic convergence which would mean over 30 (respectively 100) correct decimal places after 5 (respectively 7) iterations (starting with 1 correct digit); usually no ...

  9. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    The next approximation x k is now one of the roots of the p k,m, i.e. one of the solutions of p k,m (x)=0. Taking m =1 we obtain the secant method whereas m =2 gives Muller's method. Muller calculated that the sequence { x k } generated this way converges to the root ξ with an order μ m where μ m is the positive solution of x m + 1 − x m ...