Search results
Results From The WOW.Com Content Network
These properties characterize hyperbolic paraboloids and are used in one of the oldest definitions of hyperbolic paraboloids: a hyperbolic paraboloid is a surface that may be generated by a moving line that is parallel to a fixed plane and crosses two fixed skew lines.
A rotating furnace is a device for making solid objects which have concave surfaces that are segments of axially symmetrical paraboloids. Usually, the objects are made of glass . The furnace makes use of the fact, already known to Newton , that the centrifugal-force-induced shape of the top surface of a spinning liquid is a concave paraboloid ...
This page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower ( hyperbolic shell ) for the 1896 All-Russian Exposition .
Paraboloidal coordinates are three-dimensional orthogonal coordinates (,,) that generalize two-dimensional parabolic coordinates. They possess elliptic paraboloids as one-coordinate surfaces. As such, they should be distinguished from parabolic cylindrical coordinates and parabolic rotational coordinates , both of which are also generalizations ...
Consisting of 32 propositions, the work explores properties of and theorems related to the solids generated by revolution of conic sections about their axes, including paraboloids, hyperboloids, and spheroids. [1] The principal result of the work is comparing the volume of any segment cut off by a plane with the volume of a cone with equal base ...
For example, two points uniquely define a line, and line segments can be infinitely extended. Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry. For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting ...
Ruled surface generated by two Bézier curves as directrices (red, green). A surface in 3-dimensional Euclidean space is called a ruled surface if it is the union of a differentiable one-parameter family of lines.
In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines z = 1, y = x; z = −1, y = −x. The two paraboloids together look like a pair of orchids joined back-to-back. Now run the third hyperbolic paraboloid, z = xy, through them. The result ...