Search results
Results From The WOW.Com Content Network
Statistical disclosure control (SDC), also known as statistical disclosure limitation (SDL) or disclosure avoidance, is a technique used in data-driven research to ensure no person or organization is identifiable from the results of an analysis of survey or administrative data, or in the release of microdata.
It is ubiquitous in nature and statistics due to the central limit theorem: every variable that can be modelled as a sum of many small independent, identically distributed variables with finite mean and variance is approximately normal. The normal-exponential-gamma distribution; The normal-inverse Gaussian distribution
In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it.
For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale). Various attempts have been made to produce a taxonomy of levels of measurement.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
The Fisher information matrix is used to calculate the covariance matrices associated with maximum-likelihood estimates. It can also be used in the formulation of test statistics, such as the Wald test. In Bayesian statistics, the Fisher information plays a role in the derivation of non-informative prior distributions according to Jeffreys ...
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
Only when the advance knowledge of the content of the message by the receiver is less than 100% certain does the message actually convey information. For example, quoting a character (the Hippy Dippy Weatherman) of comedian George Carlin: Weather forecast for tonight: dark. Continued dark overnight, with widely scattered light by morning. [8]