When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    On the far side of the figure, the return current flows from the rotating arm through the far side of the rim to the bottom brush. The B-field induced by this return current opposes the applied B-field, tending to decrease the flux through that side of the circuit, opposing the increase in flux due to rotation. On the near side of the figure ...

  3. Inductance - Wikipedia

    en.wikipedia.org/wiki/Inductance

    Because the induced voltage is greatest when the current is increasing, the voltage and current waveforms are out of phase; the voltage peaks occur earlier in each cycle than the current peaks. The phase difference between the current and the induced voltage is ϕ = 1 2 π {\displaystyle \phi ={\tfrac {1}{2}}\pi } radians or 90 degrees, showing ...

  4. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.

  5. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...

  6. Lenz's law - Wikipedia

    en.wikipedia.org/wiki/Lenz's_law

    The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. [8]

  7. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    Over 98% of the current will flow within a layer 4 times the skin depth from the surface. This behavior is distinct from that of direct current which usually will be distributed evenly over the cross-section of the wire. An alternating current may also be induced in a conductor due to an alternating magnetic field according to the law of induction.

  8. Fleming's rules - Wikipedia

    en.wikipedia.org/wiki/Fleming's_rules

    Fleming's rules are a pair of visual mnemonics for determining the relative directions of magnetic field, electric current, and velocity of a conductor. [1]There are two rules, one is Fleming's left-hand rule for motors which applies to situations where an electric current induces motion in the conductor in the presence of magnetic fields (Lorentz force).

  9. Induction generator - Wikipedia

    en.wikipedia.org/wiki/Induction_generator

    The induced current create a rotor flux with magnetic polarity opposite to the stator. In this way, the rotor is dragged along behind stator flux, with the currents in the rotor induced at the slip frequency. The motor runs at the speed where the induced rotor current gives rise to torque equal to the shaft load.