Search results
Results From The WOW.Com Content Network
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]
The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a vector whose jth element (=, …,) is one of the random variables.
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
The Kalman filter tracks the average state of a system as a vector x of length N and covariance as an N × N matrix P. The matrix P is always positive semi-definite and can be decomposed into LL T. The columns of L can be added and subtracted from the mean x to form a set of 2N vectors called sigma points. These sigma points completely capture ...
The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables.
Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]
The covariance matrix of an random vector is an matrix whose (,) th element is the covariance between the i th and the j th random variables. [ 2 ] : p.372 Unlike in the case of real random variables, the covariance between two random variables involves the complex conjugate of one of the two.