Search results
Results From The WOW.Com Content Network
A system with a smaller page size uses more pages, requiring a page table that occupies more space. For example, if a 2 32 virtual address space is mapped to 4 KiB (2 12 bytes) pages, the number of virtual pages is 2 20 = (2 32 / 2 12). However, if the page size is increased to 32 KiB (2 15 bytes), only 2 17 pages are required. A multi-level ...
Windows 95, Windows 98 and Windows Me use a similar file, and the settings for it are located under Control Panel → System → Performance tab → Virtual Memory. Windows automatically sets the size of the page file to start at 1.5× the size of physical memory, and expand up to 3× physical memory if necessary.
The entries in the page directory have an additional flag in bit 7, named PS (for page size). If the system has set this bit to 1, the page directory entry does not point to a page table but to a single, large 4 MB page (Page Size Extension).
When physical memory is not full this is a simple operation; the page is written back into physical memory, the page table and TLB are updated, and the instruction is restarted. However, when physical memory is full, one or more pages in physical memory will need to be paged out to make room for the requested page.
The entries in the page directory have an additional flag, in bit 7, named PS (for page size). This flag was ignored without PSE, but now, the page-directory entry with PS set to 1 does not point to a page table, but to a single large 4 MiB page. The page-directory entry with PS set to 0 behaves as without PSE.
The sizes of the fields are dependent on the page size. [22]: 3-2–3-4 The Windows NT AXP PALcode supports a page being accessible only from kernel mode or being accessible from user and kernel mode, and also supports a fault on write bit. [22]: 3-5
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The page attribute table (PAT) is a processor supplementary capability extension to the page table format of certain x86 and x86-64 microprocessors. Like memory type range registers (MTRRs), they allow for fine-grained control over how areas of memory are cached , and are a companion feature to the MTRRs.